Sri Chaitanya

SRI CHAITANYA EDUCATIONAL INSTITUTIONS, A.P.

DERABAD I Guntur I VIJAYAWADA Visakhapatnam I Tirupathi Eluru Bhimavaram Rajahmundry Kakinada Machilipatnam Tenali Srikakulam Ongole Anantapuram Nellore Amalapuram Chittoor Kurnool

CENTRAL OFFICE- MADHAPUR EAMCET-2014 MEDICAL CODE – C (22-05-2014)

BOTANY

1.	A cross between two tall garden pea plants produced all tall plants. The possible genotypes of			
	the parents are			
	I) TT, TT	II) TT, Tt	III) Tt, tt	IV) Tt, Tt
	The correct answer	is		
	1) III, IV	2) I, IV	3) I, II	4) II, III
An	s : 3			
2.	Tall (T) is complete	ely dominant over dwa	rf (t). Red flower colour (R) is incompletely dominant
	over white (r), the	heterozygote being pi	nk. Plant having genotype	of Tt Rr is self pollinated.
	What would be the	proportion of plants wi	th dwarf and pink character	rs in its progeny ?
	$1)\frac{2}{2}$	$(2)\frac{1}{2}$	$3)\frac{9}{2}$	$(4)\frac{3}{2}$
	16	16	16	16
An	s : 1			
3.	If the codon GGU is a	reversed, the resulting co	don will code for this amino a	acid
	1) Tyr	2) Trp	3) Leu	4) Thr
An	s : 2			
4.	Study the following li	ists		
	List - I		List – II	
	A) Exon		I) Site for binding of RNA p	polymerase
	B) Capping		II) Coding sequence	
	C) Tailing		III) Lagging strand	
	D) Promoter		IV) Methyl guanosine tripho	osphate
			V) Adenylate residues	
	The correct match is			
	A B C D		A B C D	
	1) II IV V I		2) II IV I V	
	3) III I II IV		4) IV II III I	
An	s : 1			

5. Identify the correct pair of combinations

EA	AMCET-2014			Sri Chaitanya
I)	$)^{14}C$ -	Distinction between PS	I and PS II	
П	I) ^{15}N -	Semiconservative repli	cation of DNA	
II	II) ${}^{35}S$ -	Polypeptide synthesis		
IV	V) ${}^{32}P$ -	Identification of chemi	cal nature of genetic material	
1)) II, III	2) II, IV	3) I, II	4) I, III
Ans : 2	2			
 6. So tr m co 1) 2) 3) 4) 	 6. Some foreign DNA fragment is attached to Cla I site of pBR322. This recombinant vector is used to transition Escherichia coli host cells. The cells subjected to transformation are plated on two different media – one containing ampicillin and the other containing tetracycline. The transformed cells containing the recombinant vector 1) will grow on both tetracycline containing and ampicillin containing media 2) will not grow on either tetracycline containing or ampicillin containing media 3) will grow on tetracycline but not on ampicillin containing media 			
Ans	1			
7 A	ssume that the occur	rence of nitrogen bases	in adjacent positions in a DN	A strand is random Identify
th	he minimum number	of nucleotides in a D	NA strand where GAAT can	occur once on the basis of
pi	robability ?			
1)) 512	2) 256	3) 4096	4) 1024
Ans : 2	2			
8. St	tudy the following lis	sts		
L	list - I		List – II	
А	A) RNA I		I) Cotton bollworms	
В	B) ELISA		II) Early detection of HIV	
C	C) PCR		III) Meloidegyne resistance	
D	D) Cry I Ab		IV) Antigen – antibody inter	action
			V) Corn borer	
Т	The correct match is			
	A B C D		A B C D	
1)) III IV II V		2) IV III I V	
3)) II III V IV		4) V I III II	
Ans :	1			
9. Id	dentify the correct pa	ir of combinations		
I)) Parbhani Kranti	- Resistance to virus	- Bhindi	
II	I) Pusa Gaurav	- Resistance to aphids	- Mustard	

Page 2

EAMCET-2014	Sri Chaitanya
III) Pusa Sadabahar - Resistance to fru	it borer - Cow pea
IV) Pusa Shubhra - Resistance to white	e rust - Cauliflower
1) II, III 2) II, IV	3) I, II 4) I, III
Ans:3	
10. Study the following lists	
List - I	List – II
A) BOD	I) Treatment of sewage
B) KVIC	II) Measure of organic matter in water
C) LAB	III) Biological methods for controlling plant diseases
D) STPS	IV) Increases vitamin B_{12}
	V) Production of biogas
The correct match is	
A B C D	A B C D
1) IV III II V	2) V II III I
3) II I IV V	4) II V IV I
Ans:4	
11. Assertion (A) : The RQ value of fats is least	ss than one
Reason (R) : The amount of CO_2 rel	leased is less than the O_2 consumed when fats are used in
respiration	
1) A is true but R is false	2) A is false but R is true
3) Both A and R are true and R is the corr	rect explanation of A
4) Both A and R are true but R is not the	correct explanation of A
Ans : 3	
12 Study the following lists	
List - I	List – II
A) Early seed production in conifers	I) Indole substance
B) Seed development and maturation	II) Terpene substance
C) Lateral shoot growth	III) Volatile substance
D) Root hair formation	IV) Adenine derivative
	V) Carotenoid derivative
The correct match is	
A B C D	АВСД
3) II I V IV	4) IV III II I
	.,

EAMCET-2014		Sri Chaitanya
13. In flowering plants, the site of perception of l	ight/dark duration is	
1) Stem2) Leaves	3) Shoot apex	4) Floral meristem
Ans:2		
14. Beggiota is a		
1) Chemoautotroph 2) Photoautotroph	3) Photoheterotroph	4) Chemoheterotrophic
Ans : 1		
15. Identify the correct pair of combination		
I) Viroid – Bovine spongiform encephalitis	II) Prion – Creutzfeldt – Jal	kob disease
III) Measles virus – Glycoprotein projections	IV) Rabies virus – Polyhed	ral symmetry
1) III, IV 2) I, III	3) I, II	4) II, III
Ans:4		
16. A taxon is observed. Himgiri variety which i	s resistant to hill bunt disease	e belongs to this taxon. In this
taxon, pollen grains lose viability within 30	minutes of their release from	anthers. The taxon belongs to
the order		
1) Sapindales 2) Polemoniales	3) Rosales	4) Poales
Ans:4		
17. Identify the wrong combination		
1) Dryopteris – Rhizome	2) Cycas – Coralloid roots	
3) Volvox – Colonial form	4) Marchantia – Pseudo – e	laters
Ans:4		
18. Study the following lists		
List - I	List – II	
A) Micrographia	I) Skoog	
B) Technique of plant tissue culture	II) Bessey	
C) Phylogenetic classification	III) Joseph Priestley	
D) Absorption of toxic gases by plants	IV) Robert Hooke	
	V) Stephen Hales	
The correct match is		
A B C D	A B C D	
1) IV III II I	2) II I IV V	
3) IV I II III	4) III II V IV	
Ans: 3		
19. Trichoderma erythrium which gives colour to	o red sea is a	
1) Green alga2) Blue green alga	3) Red alga	4) Brown alga
Ans:2		

EAMCET-2014	Sri Chaitanya			
20. Identify the characters of must	ard, chilli, cauliflower respectively			
1) Inferior ovary, zygomorphic	c flower, corymb			
2) Whorled phyllotaxy, uniloc	ular ovary, production of flowers at the same node of the peduncle			
3) Hypoynous flower, unilocular ovary, corymb				
4) Axile placentation, tricarpe	llary gynoecium, sessile flowers			
Ans:3				
1. Four plants A, B, C, D are of	oserved. A has cartilaginous endocarp in the fruit and fleshy thalamus a			
chief edible part. B has caryo	psis fruit with endosperm as the chief edible part. In 'C' each carpel of			
apocarpous gynoecium develo	ps into a fruitlet and its mesocarp and endocarp are the chief edible parts			
'D' has syconus fruit with	edible fleshy peduncle. To which families A, B, C and D belon,			
respectively ?				
1) Annonaceae, Rosaceae, Mo	raceae, Rutaceae			
2) Solanaceae, Cucurbitaceae,	Anacardiaceae, Moraceae			
3) Rutaceae, Anacardiaceae, R	losaceae, Fabaceae			
4) Rosaceae, Poaceae, Annona	aceae, Moraceae			
Ans:4				
2. Match the following lists				
List - I	List – II			
A) Alstonia	I) Roots at lower nodes of the stem			
B) Ananus sativus	II) Leaflets are attached at a common point in the leaf			
C) Sugarcane	III) Swollen placenta			
D) Bombax ceiba	IV) More than two leaves at every node			
	V) Underground lateral branches producing aerial leafy shoots			
The correct match is				
A B C D	A B C D			
1) IV V I II	2) V III I II			
3) V III II IV	4) IV II V I			
Ans:1				
.3. Identify the wrong pair of state	ements			
I) Number of stamens in 5 flow	wers of Allium is equal to those in 5 flowers of Solanum			

II) The microsporangia of Hibiscus and Asparagus are having 80 pollen grains each. Then the ratio of the number of pollen grains produced from each stamen of these two plants is 1 : 1

III) The ratio of the number of stamens in the flowers of Pisum and Datura is 2:1

IV) The number of carpels in a flower of Smilax is equal to the number of carpels in a cyathium inflorescence

1) III, IV 2) I, IV 3) I, II 4) II, III

R 1	EAMCET-2014			Sri Chaitanya		
Ans	Ans: 3					
24.	Wind pollinated plant	s generally do not show	v the following character			
	1) Feathery stigma		2) Single ovule in the ovary	/		
	3) Well exposed stam	ens	4) Flowers are large and co	lourful		
Ans	: 4					
25.	Identify the pair of wr	ong statements in the f	following			
	I) Intine of pollen grai	in is made up of sporop	oollenin			
	II) Pollen grains are w	vell preserved as fossils	because of the presence of spo	oropollenin		
	III) Enzymes can degi	ade the organic materi	al of the exine of pollen grain			
	IV) Sporopollenin car	withstand high tempe	ratures, strong acids and alkali			
	1) III, IV	2) I, III	3) I, II	4) II, III		
Ans	:2					
26.	In Bentham and Hool	ker's classification, the	sub – class Polypetalae and C	Gamopetalae have the cohorts		
	in the ratio of					
	1)1:1	2) 2 : 1	3) 2 : 3	4) 3 : 2		
Ans	: 1					
27.	In which of the follo	wing plants, pollen is	released before the stigma be	ecomes receptive in the same		
	flower ?					
	1) Allium	2) Colchicum	3) Datura	4) Solanum		
Ans	: 1					
28.	Chromosome number	in the endosperm cell	of plant 'A' and in the root api	ical meristem cell of plant 'B'		
	together equal the ch	romosome number in	the shoot apical meristem ce	ell of Apple. Plants A and B		
	respectively are					
	1) Maize, Haplopappu	18	2) Rice, Potato			
	3) Rice, Haplopappus		4) Rice, Maize			
Ans	:1					
29.	There are 20% Adeni	nes among the bases i	n a DNA fragment measuring	6.8nm in length. The number		
	of pentoses, nitrogen	base pairs, phosphat	e groups and hydrogen bond	s in this DNA fragment are		
	respectively					
	1) 52, 20, 20, 40	2) 40, 52, 40, 20	3) 20, 40, 52, 40	4) 40, 20, 40, 52		
Ans	: 4					
30.	Study the following li	sts				
	List - I		List – II			
	A) G ₁ phase	I) Rej	plication of NA			
	B) S phase	II) Qu	uiscent stage			

	EAMCET-2014	Sri Chaitanya
	C) G ₂ phase	III) Condensation of chromatin
	D) G _o phase	IV) Protein synthesis
		V) Interval between mitosis and initiation of DNA replication
	The correct match is	
	A B C D	A B C D
	1) III V I II	2) V IV I III
	3) V I IV II	4) V II III IV
Ans	5:3	
31.	Study the following lists	
	List - I	List – II
	A) Golgi apparatus	I) Conversion of lipids to carbohydrates
	B) Glyoxysomes	II) Catabolism of long chain fatty acids
	C) Peroxisomes	III) Formation of glycoproteins and glycolipids
	D) Endoplasmic reticulum	IV) Synthesis of lipids
		V) Osmoregulation
	The correct match is	
	A B C D	A B C D
	1) IV V I II	2) V IV II III
	3) III I II IV	4) II III V I
Ans	5:3	
32.	Which one of the following characters	is not found in transverse section of monocot stem ?
	1) Sclerenchyma bundle sheath	2) Lysigenous cavity
	3) Sclerenchymatous hypodermis	4) Starch sheath
Ans	5:4	
33.	Identify the correct pair of statements	
	I) Functions of sieve tubes are controlle	ed by the nucleus of companion cells
	II) Albuminous cells are present in ang	iosperms
	III) In dicot root, the vascular cambiun	n is completely secondary in origin
	IV) Cylindrical meristems contribute to	o the formation of primary plant body
	1) I, III 2) III, IV	3) I, II 4) II, III
Ans	5:1	
34.	Identify the wrong pair of statements	
	I) During plant succession, some spe	ccies colonise an area and populations become more numerous,
	whereas populations of other species d	ecline and even disappear
	II) Both hydrarch and xerarch succession	ons lead to mesic conditions

-	EAMCET-2014	· · · · ·		Sri Chaitanya
l	III) Secondary success	sion is a slow process wh	nen compared to primary succession	n
l	IV) In the successive s	seral stages, there is no c	hange in the diversity of species of	organisms
	1) II, III	2) 1, 11	3) III, IV 4) I	, 111
Ans :	: 3			
35. 8	Study the following li	sts		
Ι	List - I		List – II	
A	A) Salvinia		I) Submerged, suspended hydroph	nyte
I	B) Lichens		II) Amphibious plant	
(C) Rhizophora		III) Heterosporous plant	
Ι	D) Utricularia		IV) Soil formation	
			V) Halophyte	
J	The correct match is			
	A B C D		A B C D	
1	1) III II V I		2) V III IV I	
3	3) V II I III		4) III IV V I	
Ans :	: 4			
36. 8	Study the following	table showing the com	ponents of water potential of for	ur cells of an active
t	transpiring plant			
(Cell	Solute potential (MPa)	Pressure potential (MPa	ı)
I	A	- 0.68	0.42	
-				
ł	В	- 0.75	0.36	
1	B C	- 0.75 - 0.83	0.36 0.47	
 (B C D	- 0.75 - 0.83 - 0.57	0.36 0.47 0.29	
] (]]	B C D Identify the four cells	- 0.75 - 0.83 - 0.57 as root hair, cortical cel	0.36 0.47 0.29 l, endodermal cell (lacking caspari	an strips) and pericyc
	B C D Identify the four cells cell respectively in the	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel young root (assuming s 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them	an strips) and pericyc
] (]]]]]]]]]]]]]]]]]]	B C D Identify the four cells cell respectively in the 1) B, D, C, A	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel young root (assuming s 2) D, A, C, B 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A	an strips) and pericyc
1 (1 1 c 1 Ans :	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel e young root (assuming s 2) D, A, C, B 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A	an strips) and pericyc) A, C, B, D
1 (1 1 Ans : 37. S	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel young root (assuming s 2) D, A, C, B 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A	an strips) and pericyc) A, C, B, D
1 (1 (1 (1 (1)() (1)()()()()()()()(B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel young root (assuming s 2) D, A, C, B 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II	an strips) and pericyc) A, C, B, D
1 (1 (1 (1 (1) (1) (1) (1) (1)	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru	 - 0.75 - 0.83 - 0.57 as root hair, cortical cele young root (assuming s 2) D, A, C, B 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease	an strips) and pericyc)) A, C, B, D
I (I (1 (1 (1) (1) (1) (1) (1) (B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru B) Mottled leaf	 - 0.75 - 0.83 - 0.57 as root hair, cortical cele young root (assuming s 2) D, A, C, B sts 	0.36 0.47 0.29 I, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease II) Hexokinase	an strips) and pericyc) A, C, B, D
1 (1 Ans : 37. S 1 4 H	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru B) Mottled leaf C) Mouse ear in pecar	 - 0.75 - 0.83 - 0.57 as root hair, cortical cel e young root (assuming s 2) D, A, C, B sts 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease II) Hexokinase III) Nitrogenase	an strips) and pericyc
1 (1 Ans : 37. S 1 4 H C	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru B) Mottled leaf C) Mouse ear in pecar D) Whip tail in caulifl	 - 0.75 - 0.83 - 0.57 as root hair, cortical cele young root (assuming s 2) D, A, C, B sts s ower 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease II) Hexokinase III) Nitrogenase IV) Cytochrome 'C' oxidase	an strips) and pericyc
1 (1 Ans : 37. S 1 4 E 1 (1	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru B) Mottled leaf C) Mouse ear in pecar D) Whip tail in caulifl	 - 0.75 - 0.83 - 0.57 as root hair, cortical celler young root (assuming second cassuming second casses) 2) D, A, C, B sts sts ower 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease II) Hexokinase III) Nitrogenase IV) Cytochrome 'C' oxidase V) Carboxypeptidase	an strips) and pericyc
1 (1 Ans : 37. S 37. S 1 4 1 1 0 1	B C D Identify the four cells cell respectively in the 1) B, D, C, A : 3 Study the following li List - I A) Die – back in citru B) Mottled leaf C) Mouse ear in pecar D) Whip tail in caulifl The correct match is	 - 0.75 - 0.83 - 0.57 as root hair, cortical celle young root (assuming s 2) D, A, C, B sts sts 	0.36 0.47 0.29 l, endodermal cell (lacking caspari ymplastic water flow through them 3) A, D, C, B 4) A List – II I) Urease II) Hexokinase III) Nitrogenase IV) Cytochrome 'C' oxidase V) Carboxypeptidase	an strips) and pericyc

EAMCET-2014		Sri Chaitanya			
1) III II IV I	2) IV V I III				
3) IV I III V	4) V III II IV				
Ans:2					
38. identify the correct pair of statemen	identify the correct pair of statements				
I) Niacin containing coenzyme faci	I) Niacin containing coenzyme facilitates the oxidation of malate in the matrix of mitochondria				
II) Haem is the prosthetic group stroma of chloroplast	II) Haem is the prosthetic group for the enzyme which catalyses the carboxylation of RuBP in the stroma of chloroplast				
III) The electron carrier between c	cytochrome 'C' reductase and cytoc	chrome 'C' oxidase is attached to			
the inner surface of inner membran	e of mitochondria				
IV) Water splitting reaction in the	lumen of thylakoid requires chloring	e			
1) I, II 2) I, IV	3) II, III	4) III, IV			
Ans:2					
39. Assertion (A) : Higher yields in ca enriched green houses	ase of bell pepper can be achieved b	by growing them in carbondioxide			
Reason (R): Due to higher intrace	ellular CO_2 concentration in bundle	sheath cells RuBisCo mainly acts			
as carboxylating enzyme					
1) A is true but R is false	2) A is false but R is tr	ue			
3) Both A and R are true and R is t	he correct explanation of A				
4) Both A and R are true but R is n	ot the correct explanation of A				
Ans:1					
40. The form of carbon used for the car	rboxylation of phosphoenol pyruvate	e in C_4 plants is			
1) H_2CO_3 2) C_2H_4	3) CH ₄	4) HCO ₃			
Ans:4					
	ZOOLOGY				
41. Proteus anguinus is an example	for				
1) Circannular Rhythms	2) Effect of light on	Pigmentation			
3) Phototaxis	d) Photokinesis				
Ans:2					
42. A Molluscan with calcareous sp	icules is				
1) Lepidopleurus 2) Doris	3) Neopilina	4) Chaetoderma			
Ans:4					
43. In the following functional hum	an lung studies, identify the total	lung capacity			
A) Inspiratory capacity (IC)					
B) Functional residual canacity ((FRC)				

Reamcet-2014			Sri Chaitanya	
C) Vital capacity	C) Vital capacity (VC)			
D) Inspiratory re	D) Inspiratory reserve volume (IRV)			
E) Residual volu	E) Residual volume (RV)			
F) Expiratory res	F) Expiratory reserve volume (ERV)			
G) Tidal volume	(TV)			
The correct answ	er is			
1) (D) + (F)	2) (A) + (D)	3) (B) + (C)	4) (C) + (E)	
Ans:4				
44. The protozoan w	ith heliopodia as locon	notory structures		
1) Actinophrys	2) Entamoeba	3) Elphidium	4) Euglypha	
Ans : 1				
45. Males produces s	sperms by mitosis in			
1) Periplaneta Ai	nericana	2) Apis mellifera		
3) Drosophila me	elanogaster	4) Lepisma		
Ans:2				
46. Match the follow	ing			
List – I			List – II	
A) Jim Corbett N	lational Park		I) Gujarat	
B) Kaziranga Na	tional Park		II) Andhra Pradesh	
C) Mahavir Hari	na Vanasthali National	Park	III) Rajasthana	
D) Keoladeo Gha	ana National Park		IV) Uttarkhand	
			V) Assam	
The correct ma	tch is			
A B C D	A B C D	A B C D	A B C D	
1) II V IV III	2) II I III IV	3) IV I II V	4) IV V II III	
Ans:4				
47. The inner lining	of the ducts of sweat gl	lands and pancreatic duct i	s formed by this epithelium	
1) Stratified cube	oidal	2) Stratified non-kera	ntinised squamous	
3) Transitional		4) Pseudostratified		
Ans:1				
48. Match the follow	ing			
List – I		List – II		
A)African sleepi	ng sickness	I) Sacculina		

EAMCET-2014	Sri Chaitanya		
B) Dumdum fever	II) Haemophilus influenza		
C) Pneumonia	III) Leishmania donovani		
D) Parasitic castration	IV) Trypanosoma gambiense		
	V) Leishmania tropica		
The correct match is			
A B C D A B C D	A B C D A B C D		
1) IV III II I 2) III IV II I	3) III I II IV 4) IV III I V		
Ans:1			
49. Skin color in man is an example of			
1) Sex –linked inheritance	2) Multiple allelism		
3) Pieiotropy	4) Polygenic inheritance		
Ans:4			
50. In Egg the waves which are quite low in fr	requency and having high amplitude are		
1) Theta waves 2) Delta waves	3) Beta waves4) Alpha waves		
Ans:2			
51. Match the following			
List -I	List –II		
A)Down syndrome	I) 45 X		
B) Edward syndrome	II) 47 , XX, +13		
C) Klinefelter's syndrome	III) 47, XX, +18		
D) Patau syndrome	IV) 47, XX, + 21		
E) Turner's syndrome	V) 47, XXY		
The correct match is			
A B C D E A B C D E	A B C D E A B C D E		
1) III IV II I V 2) II III IV V I	3) IV III V II I 4) IV II V III I		
Ans: 3			
52. Choose the wrong statement with reference	e to subspecies		
1) They do not interbreed with individual	of other species		
2) They are new species in the making			
3) Geographically isolated population of a	species		
4) They show minor variations from paren	4) They show minor variations from parent population		
Ans:1			
53. Erythropoietin is a hormone produced from	n		

	EAMCET-2014			Sri Chaitanya		
	1) Thymus	2) Pituitary	3) Heart	4) Kidney		
Ans	Ans:4					
54.	Intra abdominal test	es are found in				
	1) Panthera and Equus		2) Macaca and Macropu	us		
	3) Balaenoptera and	Delphinus	4) Canis and Felis			
Ans	5:3					
55.	Match the following	5				
	List – I		List –II			
	(Part of nephron)		(Function)			
	A)Proximal convolu	ited tubule	I) Impermeable to sodiu	im ions		
	B) Distal convoluted	d tubule	II) Impermeable to wate	er		
	C) Descending limb	of Henle's loop	III) Facultative reabsorp	ption of water Na ⁺		
	D) Ascending limb	of Henle's loop	IV) Reabsorption of nut	trients and Na+		
	The correct match is	5				
	A B C D	A B C D	A B C D	A B C D		
	1) III IV II I	2) III IV I II	3) IV III I II	4) IV II I III		
Ans	5:3					
56.	In Alpha Thalassem	ia the gene HBA1 is l	ocated on this chromosom	ie		
	1) 8	2) 22	3) 9	4) 16		
Ans	5:4					
57.	Dense regular conne	ective tissue is present	in			
	1) Ligament and ten	idons	2) Joint capsule and W	harton's jelly		
	3) Periosteum and e	ndosteum	4) Pericardium and heart valves			
Ans	5:1					
58.	The secondary stem	cells that product Neu	atrophils is			
	1) Granulocyte-mon	nocyte progenitor	2) B-cell committed pro	ogenitor		
	3) Megakaryoblast		4) Erthrocyte committee	d progenitor		
Ans	5:1					
59.	Match the following	5				
	Set – I		Set – II			
	A)Natural active im	munity	I) Develops due to vacc	ination		
	B) Natural passive i	mmunity	II) Anti-rabies serum			
	C) Artificial active i	mmunity	III) Acquired after smallpox infection			

EAMCET-2014	Sri Chaitanya		
D) Artificial passive immunity	IV) Transferred from mother to child		
The correct match is			
A B C D A B C D	A B C D A B C D		
1) IV III I II 2) III I IV II	3) III IV I II 4) III IV II I		
Ans:3			
60. Match the following			
List – I	List – II		
A)Zygomatic bone	I) Keystone bone of cranium		
B) Lacrimal bones	II) Cheek bone of cranium		
C) Parietal bones	III) Smallest bone of face		
D) Sphenoid bone	IV) Roof of cranium		
	V) Floor of cranium		
The correct match is			
A B C D A B C D	A B C D A B C D		
1) I III V II 2) II III IV I	3) II IV I III 4) II III IV V		
Ans: 2			
61. The muscles of human eye receive impuls	es by the innervations of these cranial nerves		
1) VI, III, X 2) III, IV, X	3) III, IV, VI 4) IX, X, IV		
Ans:3			
62. Match the following			
List – I	List – II		
A)Leydig cells I) Carry sperms fro	om seminiferous tubules to vasa efferentia		
B) Sertoli cells II) Nurish sperms			
C) Rete testis III) Secretion of test	osterone		
D) Corpus luteum IV) Secretion of prog	gresterone		
The correct match is			
A B C D A B C D	A B C D A B C D		
1) II III V IV 2) III II I IV	3) III II V IV 4) II III I V		
Ans:2			
63. In the cycle of Ascaris lumbricoides rhabd	litiform larva undergoes 2^{nd} and 3^{rd} moultings in		
1) Liver2) Heart	3) Alveoli of lungs4) Small intestine		
Ans: 3			
64. Statement (S): Lancelets are jawless, primitive fish like vertebrates			

EAMCET-2014			Sri Chaitanya	
Statements (R : In	lancelets notochord, tu	ubular nerve cord and pha	aryngeal gills slits are	
Present throughout	Present throughout their life.			
1)(S) is correct bu	1)(S) is correct but R) is wrong			
2) (S) is wrong bu	t R) is correct			
3) Both (S) and R) are correct and R) is t	he correct explanation to	S)	
4) Both S) and R)	are correct and R) is not	ot the correct explanation	to S)	
Ans:2				
65. Match the followi	ng with reference to A	laptations		
List – I	List – II			
A)Sea gulls	I) Chloride secretin	g glands		
B) Kangaroo rat	II) Water cells in ru	imen		
C) Turtels	III) Salt excreting g	glands		
D) Salmon	IV) Oxidation of fa	ts to generate water		
	V) Anadromous mi	gration		
The correct match	is			
A B C D	ABCD	A B C D	A B C D	
1) II IV III I	2) III II I V	3) II III IV I	4) III IV I V	
Ans:4				
66. Which of the follo	owing helps to maintain	species diversity in a co	mmunity?	
1) Omnivores	2) Predators	3) Herbivores	4) Facultative parasites	
Ans:2				
67. Which one of the	following is the first in	allopatric speciation?		
1) Geographic iso	lation	2) Hybridization		
3) Genetic drift		4) Polyploidy		
Ans:1				
68. In Periplaneta, wh	ich one of the following	ng helps to nourish the sp	erms?	
1) Ejaculatory duc	ct	2) Vas deferens		
3) Utriculi majors		4) Utriculi brevores		
Ans:4		,		
69. In Periplanteta. du	ictus ejaculatorius of m	ale reproductive system l	lies in	
1) 7 th segment	2) 8^{th} segment	3) 5 th segment	4) 6^{th} segment	
Ans : 1	, U · · ·			
70. The type of synga	my seen in Trvchonvm	pha is		
	, , , , , , , , , , , , , , , , , , ,	1		

EAMCET-2014			Sri Chaitanya
1) Hologamy	2) Anisogamy	3) Isogamy	4) Conjugation
Ans:1			
71. The biochemical	procedure used to dete	ct human chorionic gon	adotrophin (hCG) is
1) WIDAL	2) CAT	3) MRI	4) ELISA
Ans:4			
72. With reference to	Phylum Echinoderma	ta, identify the classes v	vhich have Pedicillariae
1) Crinoidea and	Holothuroidea	2) Holothuroidea ar	nd Echinoidea
3) Asteroidea and	Echinoidea	4) Ophiuroidea and	Holothuroidea
Ans:3			
73. Choose the correct	et statements with refer	rence to organic evolution	on
A) Flippers of wh	ale and wing of bat ex	hibit analogy	
B) Wing of butter	fly and wing of bird e	xhibit homology	
C) Organs with d	issimilar structure are	called analgogous organ	IS
D) Organs with si	milar structure and ori	igin are called homologo	ous organs
1) A) and C)	2) B) and D)	3) A) and B)	4) C) and D
Ans:4			
74. In which "Assiste	ed Reproductive Tech	nology" (ART), "Test T	ube Baby" procedure is applied?
1) Gamete intrafa	llopian transfer (GIFT)	
2) Intracytoplasm	ic sperm injection (IC	SI)	
3) In vitro fertiliz	ation and embryo trans	sfer (IVFET)	
4) Zygote –intrafa	allopian transfer (ZIFT	")	
Ans:3			
75. The factor which	initiations the intrinsi	c pathway of blood clott	ting and triggers cascade reaction
is			
1) Anti-haemophi	lic factor	2) Christmas factor	
3) Stuart-Prower	factor	4) Hageman's facto	r
Ans:4			
76. Emulsified fats ar	e digested by		
1) Gastric juice a	nd pancreatic juice	2) Bile juice and int	testinal juice
3) Pancreatic juic	e and bile juice	4) Pancreatic juice	and intestinal juice
Ans:4			
77. Minisatellites or V	VNTR's are used in		

	EAMCET-2014			Sri Chaitanya		
	3) gene therapy		4) gene mapping			
Ans	Ans:1					
78.	Note the following f	features and choose the	ones applicable to wuch	nereia bancrofit		
	A) Coelozoic parasi	te	B) Histozoic parasite			
	C) Monogenetic par	asite	D) Digenetic parasite			
	E) Monomorphic ac	oelomate parasite	F) Dimorphic pseudoco	pelomate parasite		
	1) B), C), F)	2) B) D), F)	3) A) C) F)	4) B), C) E		
Ans	: 2					
79.	Choose the function	is of sympathetic nervo	us system			
	1) Constricts bronch	ni and pupil of eye				
	2) Increase heart ra	te, relaxes bronchi				
	3) Decreases heart	rate, increase peristalisi	S			
	4) Dilates blood ves	ssels, stimulates salivary	y secretions			
Ans	: 2					
80.	Male heterogametic	sex, XX, XO type of s	sex determination is four	nd in		
	1) Butterflies	2) Moths	3) Grasshoppers	4) Drosophila		
Ans	: 3					
		<u>PI</u>	HYSICS			
81.	The nuclear fusion re	eaction between deuteriur	n and tritium takes place			
	1) at low temperature	e and low pressure	2) at very high temp	erature and very high pressure		
	3) when the temperat	ure is near absolute zero	4) at ordinary tempe	erature and pressure		
Ans	:2					
82.	82. For the action of a CE transistor, ($E = emitter$, $B = base$, $C = collector$) the required CB, EB junction					
	bias conditions are					
	1) Both EB and CB junctions – forward bias					
	2) Both EB and CB junctions – reverse bias					
	3) EB junction – forward bias, CB junction – reverse bias					
Ang	4) EB junction – reve $\cdot 2$	erse blas, CB junction – F	orward blas			
83	The truth tables of lo	aric astes A B C D are	riven here. Identify them a	orractly		
65.						
	11)	5)	0)			

	EAMCET-2014			Sri Chaitanya
89.	The length of a steel rod	is 5cm than that of a br	ass rod. If this difference	in their lengths is to remain
	the same at all temperatures, then the length of brass rod will be (Coefficient of linear expansion for			
	steel and brass are $12 \times 10^{-6} / C$ and $18 \times 10^{-6} / C$ respectively)			
	1) 20 cm	2) 15 cm	3) 5 cm	4) 10 cm
Ans	:4			
90.	A block of ice of mass 5	0kg is sliding on a horiz	ontal plane. It starts with	speed $5m/s$ and stops after
	moving through some di	stance. The mass of ice	that has melted due to fric	ction between the block and
	the surface is (Assum	ning that no energy	is lost and latent he	eat of fusion of ice is
	80 cal/g, J = 4.2 J/cal)			
	1) 2.86g	2) 3.86g	3) 0.86g	4) 1.86g
Ans	: 4			
91.	A carnot engine extracts	heat from water at $0^{\circ}C$	and rejects it to room at	$24.4^{\circ}C$. The work required
	by the refrigerator for	every 1kg of water co	onverted into ice (latent	heat of ice = 336 kJ/kg
	336 kJ/kg) is			
	1) 30 kJ	2) 336 kJ	3) 11.2 kJ	4) 24.4 kJ
Ans	:1			
92.	Heat is supplied to a dia	atomic gas at constant p	ressure. The ratio betwee	n heat energy supplied and
	work done is (γ for diate	omic gas = $7/5$)		
	1) 3 : 4	2) 2 : 1	3)7:2	4) 2 : 5
Ans	: 3			
93.	A closed pipe and an o	pen pipe of same lengtl	h produce 2 beats, when	they are set into vibration
	simultaneously in their for	undamental mode. If the	length of the open pipe i	s halved, and that of closed
	pipe is doubled, and if the	ey are vibrating in the fur	ndamental mode, then the	number of beats produced is
	1)4	2)7	3) 2	4) 8
Ans	:2			
94.	4. A concave lens of focal length f forms an image which is $\frac{1}{3}$ times the size of the object. Then, the			
	distance of object from the lens is			
	1) 2f	2) f	3) $\frac{2}{3}f$	4) $\frac{3}{2}f$
Ans	:1			
95.	An astronomical telescop	e arranged for normal ac	ljustment has a magnificat	ion of 6. If the length of the
	telescope is 35cm, then the	ne focal lengths of object	ive and eye piece respectiv	vely are
	1) 30cm, 5cm	2) 5cm, 30cm	3) 40cm, 5cm	4) 30cm, 6cm

Sri Chaitanya

Ans : 1

96. In young double slit interference experiment using two coherent waves of different amplitudes, the intensity ratio between bright and dark fringes is 3. Then the value of the ratio of the amplitude of the waves that arrive there is

1)
$$\left[\frac{\sqrt{3}+1}{\sqrt{3}-1}\right]$$
 2) $\left[\frac{\sqrt{3}-1}{\sqrt{3}+1}\right]$ 3) $\sqrt{3}:1$ 4) 1: $\sqrt{3}$

Ans : 1, 2

97. Work done in carrying an electric charge Q_1 once round a circle of radius R with a charge Q_2 at the centre of the circle is

Ans:4

98. The capacitance of two concentric spherical shells of radii R_1 and R_2 ($R_2 > R_1$) is

1)
$$4\pi\varepsilon_{o}R_{2}$$
 2) $4\pi\varepsilon_{o}\frac{R_{2}-R_{1}}{R_{1}R_{2}}$ 3) $4\pi\varepsilon_{o}\frac{R_{2}R_{1}}{R_{2}-R_{1}}$ 4) $4\pi\varepsilon_{o}R_{1}$

Ans : 3

99. A wire of resistance 4Ω is stretched to twice its original length. In the process of stretching, its area of cross section gets halved. Now, the resistance of the wire is

1) 8Ω 2) 16Ω 3) 1Ω 4) 4Ω

Ans: 2

100. Five resistance are connected as shown in figure. If total current flowing is 0.5A, then the potential difference $V_A - V_B$ is

Ans:4

1) 8 V

101. A particle with charge q is moving along a circle of radius R with uniform speed V. The associated magnetic moment μ is given by

1)
$$\frac{1}{2}V^2R$$
 2) $\frac{1}{4}qVR$ 3) $\frac{1}{2}qVR$ 4) $\frac{1}{2}q^2VR$

Ans : 3

EAMCET-2014			Sri Chaitanya
1) 9150 Å	2) 812 Å	2) 915 Å	4) 405 Å
Ans:3			
109. The major contribut	tion of Sir C.V. Raman i	S	
1) Principle of buoy	vancy	2) Scattering of li	ght by molecules of a medium
3) Electromagnetic	theory	4) Explanation of	photoelectric effect
Ans:2			
110. If the absolute error	rs in two physical quanti	ties A and B are a and b r	espectively, then the absolute erro
in the value of A –	B is		
1) b – a	2) a ≠ b	3) a + b	4) a – b
Ans:3			
111. A particle starts mo	oving from rest with uni	form acceleration. It trav	els a distance x in first 2 seconds
and distance y in the	he next 2 seconds. Then		
1) $y = 3x$	2) $y = 4x$	3) $y = x$	4) $y = 2x$
Ans:1			
112. At time $t = 0$, two b	oodies A and B are at the	e same point. A moves wi	th constant velocity V and B start
from rest and mov	es with constant acceler	ration. Relative velocity	of B with respect to A when the
bodies meet each of	ther is		
1) $\frac{V}{2}$	2) $\frac{V}{2}$	3) V	4) 2V
2	3		
Ans : 3			
113. A body is projected	horizontally from the to	op of a tower with a veloc	city of $10m/s$. If it hits the ground
at an angle of 45°,	the vertical component of	of velocity when it hits gr	ound in m/s is
1) $10\sqrt{2}$	2) $5\sqrt{2}$	3) 5	4) 10
Ans:4			
114. A body is projected	d with an angle θ . The	maximum height reached	l is h. If the time of flight is 4 sec
and $g = 10 m/s^2$, 1	the value of $g = 10 m/s^2$	$\frac{2}{2}$, then the value of h is	
1) 40 m	2) 20 m	3) 5 m	4) 10 m
Ans : 2	_,		.,
115 The linear momen	tum of a narticle varies	with time t as $P - a + b$	$at + ct^2$ Then which of the
following is correct		a + b	st + ct . Then which of the
1) Velocity of partic	· le is inversely proportion	nal to time	
2) Displacement of t	the particle is independent	nt of time	
=, $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$			

4) Force is dependent linearly on time

Ans:4

116. A horizontal force F is applied to a block of mass m on a smooth fixed inclined plane of inclination

heta to the horizontal as shown in the figure. Resultant force on the block up the plane is

Sri Chaitanya

1)
$$\frac{11}{4}MR^2$$
 2) $\frac{11}{2}MR^2$ 3) $\frac{MR^2}{4}$ 4) $\frac{MR^2}{4}$

Ans : 1

EAMCET-2014

CHEMISTRY

121. Observe the following reaction

 $2NO_2(g)+2OH_2(aq)+NO_3(aq)+H_2O(l)$ in this reaction,

1) OH⁻ is oxidized to H_2O 2) OH⁻ is reduced to H_2O

3) NO₂(g) is reduced to NO₂⁻(aq) and oxidized to NO₃⁻(aq)

Ans:3

122. Assertion (A): $\Delta U=0$ for a reversible as well as irreversible expansion of an ideal gas under isothermal conditions, wheres $\Delta S_{total} \neq 0$ for an irreversible process.

Reason (R) : $\Delta U=0$ is independent of temperature whereas ΔS is proportional to temperature.

The correct answer is

1) A is correct, but R is not correct

2) A is not correct, but R is correct

3) A nad R are correct, R is the correct explanation of A

4) A and R are correct, r is not the correct explanation of A

Ans : 1

123. When 0.1 moles of $N_2O_4(g)$ was placed in a 1.0 litre flask at 400 K and closed, the following equilibrium is reached with a total pressure of 6 bar.

$$\begin{array}{c} N_2 O_4 \rightleftharpoons 2 NO_2 \\ (g) & (g) \end{array}$$

Assuming ideal behaviour of the gases, the partial pressure of $N_2O_4(g)$ at equilibrium in bar is (R = 0.083 bar L mol⁻¹k⁻¹)

1) 3.322) 9.323) 0.644) 2.68

Ans : 3

124. A saturated solution of $Ca_3(PO_4)$ contains 2.0×10^{-8} M of Ca^{2+} and 1.6×10^{-5} M of PO_4^{3-} at a certain temperature. The solubility product (K_{sp}) of Cal3 $(PO_4)_2$ at that temperature is 2) 2.048×10^{-33} 3) 3.20×10^{-34} 1) 2.048 x 10^{-34} 4) 8.00 x 10^{-34} Ans:2125. The wavelength in metres, of an object of mass 1.0 g moving with a velocity of 1.0 x 10^4 cm s⁻¹ (h = $6.626 \ 10^{-34} \text{ is}$ 2) 6.626 x 10⁻³¹ 1) 6.626×10^{-26} 3) 6.626×10^{-33} 4) 6.626×10^{-27} Ans:3126. The ratio of ground state energy of Li^{2+} , He⁺ and H is 2) 3 : 2 : 1 1)1:2:33) 1 : 4 : 9 4)9:4:1Ans:4 127. Elements A, B and C belong to the same period in the long form of the periodic table. The nature of the oxides of A, B and C is amphoteric, basic and acidic respectively. The correct order of the atomic numbers of these elements is 1) C > B > A2) C > A > B 3) A > B > C4) B > A > CAns: 2128. Which one of the following is the correct order of the size of the ions ? 2) $O^{2} > F > Na^{+} > Mg^{2+}$ 1) $Na^+ > Mg^{2+} > F^- > O^{2-}$ 4) $O^{2} > F > Mg^{2+} > Na^{+}$ 3) $Mg^{2+} > Na^{+} > F^{-} > O^{2-}$ Ans: 2129. If E = the number of lone pairs of electrons on Xe, B = the number of bonding pairs of electrons, S = shape of the molecule, then, what is the correct set of E, B and S of XeF₄? S E В 3 3 octahedral 1) 3 2) 3 square planar 2 3) 4 square planar 4) 4 2 square planar Ans: 3

EAMCET-2014			Sri Chaitanya	
130^{2} , 123^{2} ,				
1)0,-1,+1	2) 0, +1, -1	3) + 1 , 0 , - 1	(4) - 1, 0, + 1	
Ans:3				
131. If 240ml, of a gas x	diffuces through a poro	ous membrane in 20min who	ereas the same volume of methane	
diffuses in 10 min a	at the same temperature	and pressure, the molar mas	ss in g mol ⁻¹ of gas x is	
1) 8	2) 64	3) 32	4) 128	
Ans:2				
132. The rms speed of h	elium in ms ⁻¹ (atomic m	$aass = 4.0 \text{ g mol}^{-1}$) at 400k i	S	
1) 15.8	20 28	3) 158	4) 1580	
Ans:4				
133. In a closed vesse	el, 5 moles of $A_2(g)$ a	and 7 moles $B_2(g)$ are r	eacted in the following manner	
$A_2(g)+3B_2(g)-$	$\rightarrow 2AB_3(g)$			
What is the total nu	mber of moles of gases	present in the container at t	he end of the reaction ?	
1) 22/3	2) 7/3	3) 14/3	4) 8/3	
Ans:1				
134. Identify the comp conditions	ounds from the follow	ing which form primary	amines under suitable reduction	
1. C_2H_5NC	2. C_2H_6	3. C ₂ H ₅ CONH ₂	4. $C_6H_5NO_2$	
1)1,4	2)3,4	3) 1 , 3 , 4	4) 2, 3, 4	
Ans:2				
135. Acetaldehyde unde	rgoes reaction in the pre	sence of dil. NaOH to give		
1) Ethyl acetate	2) Butanoic acid	3) Acetic acid	4) 3-Hydroxy butanal	
Ans:4				
136. Which one of the fo	ollowing methods can be	e used to separate a mixture	of ortho- and paranitrophenols ?	
1) Crystallization	2) Solubility	3) Sublimation	4) Steam distillation	
Ans:4				
137. $Y \xleftarrow{Na} \underbrace{Conc.H_2SO_4,413K}_{C_2H_5} (C_2H_5)_2 O$				
What are X and Y i	in the above reactions?			
Х		Y		
1) <i>H</i> ₃ <i>COH</i>		H ₃ CONa		
2) $C_4 H_9 OH$		C_4H_9ONa		

EAMCET-2014			Sri Chaitanya
3) C_2H_5OH		C_2H_5ONa	
4) <i>C</i> ₃ <i>H</i> ₂ <i>OH</i>		C_3H_7ONa	
Ans:3			
138. What is the name of	of the following reaction	?	
$CH_3CH_2CH_2Br$	$\xrightarrow{Nal} CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	CH_2I	
1) Sandmeyer Rea	ction	2) Gatterman Reaction	1
3) Finkelstein Read	ction	4) Swarts Reaction	
Ans:3			
139. Match the followir	ıg		
List – I		List – II	
A)Sucralose		I) Antioxidant	
B) Iodine		II) Artificial sweetene	er
C) Sodium benzoa	te	III) Antacid	
D) Ranitidine		IV) Antiseptic	
		V) Food preservative	
The correct answe	r is		
ABCD	A B C D	A B C D	A B C D
1)II IV I III	2) II IV V III	3) II III V I	4) II I III IV
Ans : 2			
140. Which one of the f	ollowing sets of vitamin	s is fat soluble?	
1) C, D, B_6, B_{12}	2) A, D, E, K	3) A, D, B_1, B_2	4) D, B_1, B_2, E
Ans:2			
141. Identify from the f	ollowing the monomers	which undergo condensatio	on polymerization
		СО Н	F - J
		$\left[\bigcirc \right]$	
		$\langle \langle \rangle$	
1) $HC - CH - C$	CH - CH	CO_2H	3) $H C - CHCl$
$n_{3}c - cn - c$	$m - cm_2$	2)	$3) \Pi_2 C - C \Pi C t$
4) NH		5) $F_2C = CF_2$	
(HC) C C			
6) $(H_3C)_2 C = CI$			
1)3,5	2) 1, 3	3) 1, 6	4) 2, 4
Ans:4			

EAMCET-2014 Sri Chaitanya			
142. In $[CoF_6]^{3-}$, Co^{3+} uses outer d orbits (4d) in sp^3d^2 hybridization. The number of unpaired electron	trons		
present in complex ion is.			
1)0 2)4 3)2 4)3			
Ans: 2			
143. Crystal field theory does not explain which of the following property of coordination compounds ?			
1) The covalent character of the band between metal and the ligand			
2) Magnetic property3) colour4) Structure of coordination compounds			
Ans:1			
144. Among the following inert gas elements, the elements that shows highest chemical reactivity is			
1) Ne 2) Ar 3) He 4) Xe			
Ans:4			
145. The correct arrangement of following acids of phosphorus in the increasing order of oxidation sta	ite of		
phosphorous is			
1) Hypophosphorous acid < orthophosphorous acid < Pyrophosphoric acid			
2) Hypophoshporous acid < Pyrophosphoric acid < orthophosphorous acid			
3) Pyrophosphoric acid < hypophosphrous acid < orthophosphorous acid			
4) Pyrophosphoric aicd < orthophosphorous acid < hypophosphorous acid			
Ans : 1			
146. Which one of the following methods is used in the concentration of sulphide ore ?			
1) Froth floation2) Smelting3) Roasting4) Leaching			
Ans:1			
147. Which one of the following forms a negativity charged sol?			
1) $Al_2O_3.xH_2O$ 2) $Cr_2O_3.xH_2O$ 3) TiO_2 4) Cds			
Ans:4			
148. The half life of a first order reaction is 100 seconds at 280 K. If the temperature coefficient is 3.0 it	s rate		
constant at 290 K in s^{-1} is			
1) 2.08×10^{-3} 2) 2.08×10^{-2} 3) 6.93×10^{-3} 4) 6.93×10^{-2}			
Ans:2			
149. The reduction potential of hdrodgen electrode at pH 10 is			
1) -0.059 V 2) -0.59V 3) 0.59 V 4) 0.0V			
Ans: 2			
150. The mole fraction of water in 98% (w/w) H_2SO_4 solution is			
1) 0.1 2) 0.9 3) 0.8 4) 0.02			
Ans:1			

EAMCET-2014			Sri Chaitanya		
151. van't Hoff factor,	151. van't Hoff factor, I, of a 0.5% (w/w) aqueous solution of KCl which freezes at $-0.24^{\circ}C$ is				
$(K_f \text{ of water} = 1.86)$	5K kg mol ⁻¹ ,Mol.wt.of	FKCl = 74.5			
1) 1.52	2) 2.32	3) 1.92	4) 1.32		
Ans:3					
152. The percentages of	void space for simple	e cubic, body centred cubic	and hexagonal close packed		
arranged respectivel	y are				
1) 48, 32, 26	2) 48, 26, 32	3) 26, 48, 32	4) 32, 48, 26		
Ans:1					
153. What are Y and Z in	the following reaction s	sequence ?			
1) $CH_2 = CHBr$ —	$\xrightarrow{NaNH_2} Y \xrightarrow{Hg^{2+}/H^{\oplus}}_{H_2O;333K}$	→Z			
Y	Z				
1) ethyne	acetic acid				
2) ethyne	ethanal				
3) ethylamine	ethanal				
4) ethane	ethanol				
Ans:2					
154. C-H and C-C bond le	engths (in pm) in ethane	are			
1) 133, 154	2) 110, 136	3) 112, 154	4) 100, 154		
Ans:3					
155. In the estimation of	halogen, 0.18 g of an or	ganic compound gave 0.12 g	g of silver bromide. What is the		
percentage of bromin	ne in the compound? (N	Iolar mass of AgBr= 188; At	omic weight of $Br = 80$)		
1) 35. 24	2) 34. 84	3) 28. 36	4) 30. 64		
Ans:3					
156. Which one of the fol	lowing sets contribute to	the global warming?			
1) SO_2, SO_3, O_2	2) N_2, C_2H_6, SO_3	3) $CO_2, CH_4, CFCs$	4) H_2, NO_2, SO_2		
Ans:3					
157. Which of the follow	ing is used as black pign	nent in black ink?			
1) carbon black	2) germanium	3) graphite	4) coke		
Ans:1					
158. The correct increasing order of the stability of Al^+, Ga^+, In^+, Tl^+ ions is					
1) $Al^+ < Ga^+ < Tl^+$	1) $Al^+ < Ga^+ < Tl^+ < ln^+$		+		
3) $Tl^+ < ln^+ < Ga^+$	$< Al^+$	4) $Tl^+ < Al^+ < Ga^+ < ln$	+		
Ans:2					

EAMCET-2014 159. The decreasing order of hydration enthalpies earth metal ions is

1)
$$Be^{2+} > Ba^{2+} > Ca^{2+} > Sr^{2+}$$
2) $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+} > Be^{2+}$ 3) $Be^{2+} > Ca^{2+} > Mg^{2+} > Be^{2+}$ 4) $Be^{2+} > Mg^{2+} > Ca^{2+} > Sr^{2+} > Ba^{2+}$

Ans:4

160. In which of the following reactions, H_2O_2 acts as a reducing reagent ?

1)
$$HOCl + H_2O_2 \xrightarrow{H^+} H_3O^+ + Cl^- + O_2$$

2) $Mn^{2+} + H_2O_2 \xrightarrow{OH^+} Mn^{4+} + 2OH^-$
3) $2Fe^{2+} + H_2O_2 \xrightarrow{OH^-} 2Fe^{3+} + 2OH^-$
4) $PbS(s) + 4H_2O_2(aq) \xrightarrow{H^+} PbSO_4(s) + 4H_2O(l)$

Ans:1

